凯发k8国际首页登录

    1. 热设计及热分析

      一、热设计

      热设计是随着通讯和信息技术产业的发展而出现的一个较新的行业,且越来越被重视。随着通讯和信息产品性能的不断提升和人们对于通讯和信息设备便携化和微型化要求的不断提升,信息设备的功耗不断上升,而体积趋于减。呷攘髅芏壬⑷刃枨笤嚼丛狡惹 

      热设计便是采用适当可靠的方法控制产品内部所有电子元器件的温度,使其在所处的工作环境条件下不超过稳定运行要求的最高温度,以保证产品正常运行的安全性,长期运行的可靠性 。此外,低温环境下控制加热量而使设备启动也是热可靠性的重要内容。

            目前,热设计在电动汽车动力系统热管理和热仿真、高科技、医疗设备、军工精密装备等行业中越来越被重视,成为产品研发中不可缺少的重要领域。


      二、热分析软件介绍


             FLOTHERM是一套由电子系统散热仿真软件先驱----英国FLOMERICS软件凯发·k8(国际) - 官方网站·一触即发开发并广为全球各地电子系统结构设计工程师和电子电路设计工程师使用的电子系统散热仿真分析软件,全球排名第一且市场占有率高达80%以上。


      三、电子行业热分析

             电子行业是有限元分析应用的一个重要领域。随着全球电子工业的飞速发展,电子产品的设计愈来愈精细、复杂,市场竞争要求电子产品在性能指标大幅度提高的同时,还要日趋小型化。电子产品跌落、新型电子材料的研发和制造、音频设备声场特性的设计和评估、电子产品的热力仿真、芯片封装的热分析等的力学仿真是电子领域中很深入、复杂并极具挑战性的课题,需要多门学科的理论和方法的综合应用。

            电子产品热分析

            众所周知,电子元件在运作的时候,无法达到100%的效率,所流失的能量绝大部分都转换成为热量发散,但是对于电子元件来说,温度每上升10℃,其寿命就减少到原来的一半甚至更短,这就是其随温度而变的特性。所以进行电脑等各种设备的热仿真有助于提高器件的使用寿命。

           1.显卡的散热器仿真

            显卡热管散热器,通过添加热管能有效的降低热源到散热器的热阻,进而显著提高显卡散热性能。





      2. LED封装仿真以及散热片散热性能

      详细的LED封装模型,通过仿真验证和考察电路板及散热片的散热性能。


                


      3. 芯片封装热分析

      根据具体的封装结构,建立详细分析模型,计算芯片正常工作或瞬态变化(比如启动)时的热特性和温度分布情况。芯片级热分析。


           


      4. IGBT模块散热优化

      IGBT是Insulated Gate Bipolar Transistor(绝缘栅双极型晶体管)的缩写,IGBT是由MOSFET和双极型晶体管复合而成的一种器件。在电力电子等领域得到广泛的运用。但其对工作环境要求苛刻,需要稳定可靠的散热环境。通过热仿真对IGBT进行系统级别分析,根据计算结果改进并且优化散热和布局方式。



      5. 散热器优化

      针对热源功耗,充分考虑产品重量,成本等因素,合理选择和设计散热器;并且通过热仿真计算,确定散热器的热阻特性。



      6. 电器柜分析

      通过调整结构,优化散热路径,增加热管散器等方式,有效的降低了柜内电气设备的工作温度。同时根据计算确定正常工作时电器柜内的热环境以及各个?榈奈露戎,优化柜子散热性能以及?榈牟季。



      7. 半导体元器件热仿真

      在微电子结构中,内部的热量的积聚会是元器件破坏,Bombardier Transportation Company凯发·k8(国际) - 官方网站·一触即发的工程师利用Abaqus编写的子程序模拟半导体功率元器件的温度变化以及热量流动。  


          

      8. 机箱散热性能分析

      如果一款机箱不能够起到良好的散热效果,那么对这些硬件就会产生不可逆转的损坏。随着电脑配件中几大件发热源功率的不断增加,INTEL凯发·k8(国际) - 官方网站·一触即发为了保证自己生产的CPU的温度能被控制在一个稳定工作范围内,针对机箱提出了机箱散热规范CAG(Chassis Air Guide),该规范是一个机箱内各部件的冷却散热解决方案,只有通过了结构、EMI、噪音、散热等所有一系列测试,一款机箱才能够被认定为是符合规范的产品。正是由于INTEL规范的提出,非常多的厂商针对机箱散热做出了改善, 以下是采用Abaqus进行机箱散热分析,从而优化散热结构。


        可以清楚的看到,未调整之前机箱中上部特别是CPU附近的温度相当高,调整之后可以看到温度有明显的降低。

      9. 电子封装中热传导和热应力问题

         由不同材料组成的封装组件在温度变化的环境下会产生很大的热应力,导致封装失效。Abaqus具有强大的热固耦合分析功能,包括:稳态热传导和瞬态热传导分析,顺序耦合热固分析,完全耦合热固分析,强制对流和辐射分析,热界面接触,热电耦合等等。可以定义从简单弹塑性模型到随温度变化材料常数的热塑性、热硬化性、高温蠕变等复杂材料模型,来模拟金属、聚合物、复合材料等电子材料的热学和力学性质。

            Abaqus包括51种纯热传导和热电耦合单元,83种隐式和显式完全热固耦合单元,覆盖杆、壳、平面应变、平面应力、轴对称和实体各种单元类型,包括一阶和二阶单元,为用户建模提供极大的方便。而其他通用有限元软件对应的热分析单元数量都比Abaqus少,如ANSYS中纯热传导和热耦合单元总计为40种,MARC中纯热传导单元为40种,无完全热固耦合单元。右图是台湾新竹清华大学采用Abaqus分析BGA焊点热应力和热应变的模型图。



            典型应用:塑料、陶瓷、金属封装等各种封装组件在温度载荷下的变形和受力、IC芯片和基板之间的导热、封装材料界面间的热传导、板上元件的强制对流散热、散热片通过空气的辐射散热等。


            下图为采用Abaqus分析得到的某电路板的温度场分布云图。



          10. 热疲劳问题

            Fe-Safe提供了金属和非金属材料疲劳寿命预估功能。它依托于Abaqus的求解器?,将Abaqus/Standard和Abaqus/Explicit的应力分析结果根据载荷出现的几率进行数理统计和分析,得到疲劳寿命的预估值,并可以用Abaqus/CAE的图形界面进行处理,得到用户关心的参数,有效地指导结构的疲劳设计。Fe-Safe和Abaqus的分别是疲劳寿命计算及结构位移/位移分析方面的最优秀分析软件,两者的有机结合可以对机械结构疲劳设计和分析提供最佳的解决方案。


            由于受热导致的应力和应变在温度循环下会造成封装材料疲劳失效,如倒装焊中的焊点和表面贴装中的引线热疲劳问题。Abaqus/Standard中的直接载荷循环分析功能提供了预测承受热载荷的弹塑性结构的低周热疲劳寿命。更复杂的疲劳问题可以通过Abaqus/Safe?槔词迪。右图是NEC凯发·k8(国际) - 官方网站·一触即发和纽约州立大学Buffalo分校电子封装中心合作采用Abaqus进行表面贴装中共晶焊点热疲劳失效分析的结果。


           下图为芯片焊点疲劳失效分析。


          

      四、其他行业热分析

            1.某凯发·k8(国际) - 官方网站·一触即发新能源汽车电池包水冷系统


            2.大功率IGBT(风电)液冷散热

            与艾默生(Emerson)网络能源科技的热控团队(leader:Jason)合作,完成某风电凯发·k8(国际) - 官方网站·一触即发2MW全功率风电变流器的水冷散热设计。

            单个冷板设计难度不大。采用嵌管工艺,保证无泄漏、长寿命、高可靠性。整个管网的流阻匹配性设计和监控系统可靠性更为重要。

            下图为推出的两相蒸发/冷凝回路的冷板方案      壳:验证阶段用3D打印制备,量产阶段用CNC;芯体:空调翅片工艺

            优点:汽化潜热大,冷板体积。矢,均温性好





            3.某智能电视热分析



               4 某手机热流分析




            5 某独立显卡散热分析



        6 某PCB板散热分析

       


      7 某笔记本后盖风冷热分析



      8 某大厂台式机散热分析



      点击了解:散热解决方案是否符合系统规格(Intel提供关键元器件模型参数设置)报告



      9 热器散热分析

      散热模组温度

      整体速度(流场)分布


      翅片下方与安装板上方之间的区域容易形成涡流


      10 行车记录仪热仿真案例



      11 某电控柜的铜排电流热分析案例




      12 某舱段以及设备热分析案例

      设备与舱壁热接触;舱壁外界绝热;设备2、设备3有两处热源;考虑热传导、对流、辐射




      设备温度场

      13 大型变压器线圈散热仿真分析

      大型油浸式变压器的油流、温升是影响变压器安全运行的重要性能指标。线圈温升过高会降低绝缘寿命,甚至在短期内导致绝缘失效造成变压器线圈内放电事故;油流带电,会在绝缘纸板表面聚集静电荷,从而引发放电事故。


      油流、温升问题是一个系统级问题。设计者主要关注的是线圈内的油流、温升,但整个运行冷却系统,包括线圈、油箱、管路、散热器、泵、风扇,均会影响线圈内的油流、温升。所以对该问题的仿真分析应涵盖整个变压器的冷却系统。

      14 IGBT功率?樯⑷确抡娣治

      半导体制造技术的快速发展,促使更高容量的IGBT完成大功率转换,高电压和高电流产生大量的热,会导致芯片温度过高进而损坏IGBT模块,此外温度均匀性也有利于功率?榈目煽啃,因此散热系统的设计尤为重要。IGBT?榈暮诵脑是功率半导体,直接连接在铜基板上,基板由铜层、陶瓷片和另一个铜层组成,底部的铜层附着在金属底座上,为功率?楹蜕⑷绕髦涞慕涌。

      IGBT?槿确抡娴姆椒òㄈ叽缃:腿茸璺,由于结构的复杂性全尺寸建模方法计算量太大,热阻法更为常用,一般产品手册中给出的热阻值包括结-壳热阻、壳-散热器热阻和散热器-环境热阻,在热仿真过程中如何合理利用这些数据并转换为模型参数,对仿真结果的准确性很重要。

      15  电热耦合-关键技术:电热耦合场分析,交流电的定义、交直流电的自动加载。

      16 电热耦合-电容(800VDC/400μF) 热仿真



      【网站地图】【sitemap】